Class-Dependent Dissimilarity Measures for Multiple Instance Learning

نویسندگان

  • Veronika Cheplygina
  • David M. J. Tax
  • Marco Loog
چکیده

Multiple Instance Learning (MIL) is concerned with learning from sets (bags) of feature vectors (instances), where the individual instance labels are ambiguous. In MIL it is often assumed that positive bags contain at least one instance from a so-called concept in instance space, whereas negative bags only contain negative instances. The classes in a MIL problem are therefore not treated in the same manner. One of the ways to classify bags in MIL problems is through the use of bag dissimilarity measures. In current dissimilarity approaches, such dissimilarity measures act on the bag as a whole and do not distinguish between positive and negative bags. In this paper we explore whether this is a reasonable approach and when and why a dissimilarity measure that is dependent on the bag label, might be more appropriate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissimilarity-Based Multiple Instance Learning

In this paper, we propose to solve multiple instance learning problems using a dissimilarity representation of the objects. Once the dissimilarity space has been constructed, the problem is turned into a standard supervised learning problem that can be solved with a general purpose supervised classifier. This approach is less restrictive than kernelbased approaches and therefore allows for the ...

متن کامل

A Conditional Random Field for Multiple-Instance Learning

We present MI-CRF, a conditional random field (CRF) model for multiple instance learning (MIL). MI-CRF models bags as nodes in a CRF with instances as their states. It combines discriminative unary instance classifiers and pairwise dissimilarity measures. We show that both forces improve the classification performance. Unlike other approaches, MI-CRF considers all bags jointly during training a...

متن کامل

Comparison of Log-linear Models and Weighted Dissimilarity Measures

We compare two successful discriminative classification algorithms on three databases from the UCI and STATLOG repositories. The two approaches are the log-linear model for the class posterior probabilities and class-dependent weighted dissimilarity measures for nearest neighbor classifiers. The experiments show that the maximum entropy based log-linear classifier performs better for the equiva...

متن کامل

Combined Effects of Class Imbalance and Class Overlap on Instance-Based Classification

In real-world applications, it has been often observed that class imbalance (significant differences in class prior probabilities) may produce an important deterioration of the classifier performance, in particular with patterns belonging to the less represented classes. This effect becomes especially significant on instance-based learning due to the use of some dissimilarity measure. We analyz...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012